

Обогащение биогаза

Экологичные технологии для надежного будущего

Биогаз производится путем анаэробного брожения органических отходов и состоит в основном из метана, а также примесей в виде углекислого газа (CO₂), сероводорода (H₂S), аммиака (NH₃) и водорода (H₂), которые необходимо удалить, чтобы метан стал коммерческим продуктом.

Очищенный **биометан** направляется в газопроводы и используется для производства тепловой, электрической энергии и в качестве топлива для автомобилей.

Сырье для получения биогаза

Современные технологии позволяют переработать в биогаз любые виды органического сырья. Наиболее эффективно для переработки подходят ТБО, отходы животноводческих и птицеводческих ферм, предприятий агропромышленного комплекса (АПК) и сточных вод, так как они характеризуются постоянством потока отходов во времени и простотой их сбора.

Вид сырья	Выход биогаза	% метана	Выход биометана
Бытовые твердые отходы	120 Нм³/т	57,00% CH ₄	72 Ст.м³/т
Пищевые отходы и органический мусор	125 Нм³/т	64,00% CH ₄	84 Ст.м³/т
Пищевые отходы супермаркетов	176 Нм³/т	60,00% CH ₄	111 Ст.м³/т
Пищевые отходы кухонь и организаций общественного питания	162 Нм³/т	58,00% CH ₄	99 Ст.м³/т
Осадки сточных вод (2-5% VS)	36 Нм³/т	60,00% CH ₄	22 Ст.м³/т
Жидкие и полужидкие отходы рогатого скота	23 Нм³/т	58,00% CH ₄	14 Ст.м³/т
Навоз	68 Нм³/т	58,00% CH ₄	41 Ст.м³/т
Жидкие и полужидкие отходы свиней	21 Нм³/т	60,00% CH ₄	13 Ст.м³/т
Жидкий птичий помет	93 Нм³/т	65,00% CH ₄	64 Ст.м³/т
Сухой птичий помет	190 Нм³/т	55,00% CH ₄	110 Ст.м³/т
Солома	383 Нм³/т	58,00% CH ₄	233 Ст.м³/т
Оливковый жмых	153 Нм³/т	55,00% CH ₄	84 Ст.м³/т
Жмых/ выжимки	40 Нм³/т	55,00% CH ₄	23 Ст.м³/т
Травяной силос	183 Нм³/т	60,00% CH ₄	116 Ст.м³/т
Растительные отходы рапса	612 Нм³/т	60,00% CH ₄	386 Ст.м³/т
Растительный силос	195 Нм³/т	60,00% CH ₄	123 Ст.м³/т
Растительные остатки	35 Нм³/т	60,00% CH ₄	22 Ст.м³/т
Клевер	80 Нм³/т	60,00% CH ₄	50 Ст.м³/т
Биологические отходы в виде содержимого желудочно-кишечных трактов животных	67 Нм³/т	60,00% CH ₄	42 Ст.м³/т
Побочные продукты животного происхождения (пастеризованные)	225 Нм³/т	60,00% CH ₄	142 Ст.м³/т
Отходы бойни	160 Нм³/т	60,00% CH ₄	101 Ст.м³/т
Отходы производства пищевых продуктов	265 Нм³/т	60,00% CH ₄	167 Ст.м³/т

Наша продукция вносит положительный вклад в охрану окружающей среды, улучшает производственные процессы наших клиентов и удовлетворяет потребностям общества.

Мы уделяем большое внимание улучшению нашей деятельности для исключения экологических, социальных и управленческих рисков.

«Мы разделяем беспокойство общества по поводу воздействия изменения климата на окружающую среду. И мы остаемся приверженными устойчивому развитию и поставленным целям.
Устойчивое развитие является одной из наших основных ценностей и лежит в основе того, что мы делаем как компания по производству промышленных газов».

Устойчивое развитие

Экологичность в сочетании с прогрессом

Технология обогащения биогаза позволяет предотвратить выбросы метана в атмосферу, который влияет на парниковый эффект в 21 раз сильнее, чем CO₂, и находится в атмосфере на протяжении 12 лет.

Технология обогащения биогаза — эффективный способ предотвращения глобального потепления. ∴

Применение технологий модернизации биогаза позволит вам:

- Снизить нагрузку на окружающую среду путем отсутствия выбросов в атмосферу биогаза или продуктов его сгорания
- ✓ Производить новый конечный продукт с добавленной стоимостью из отходов вашего производства для применения на собственном производстве или дальнейшей продажи
- ✓ Внести свой вклад в улучшение экологической обстановки планеты
- ✓ Соответствовать статусу экологически ответственной компании

Отрасли, где востребована очистка биогаза до биометана

Производите товарный продукт с добавленной стоимостью из отходов вашего производства с минимальными затратами и максимальной прибыльностью

Полигоны твердых бытовых отходов (ТБО)

На полигонах в процессе разложения отходов образуется свалочный газ, который, во избежание взрывов, необходимо утилизировать. Чаще всего газ утилизируют путем сжигания. Недостаток этого метода в том, что продукты сгорания выбрасываются в атмосферу.

Мы предлагаем экологичное решение производства биометана из свалочного газа, которое, помимо прочих преимуществ, принесет вам еще и дополнительную прибыль.

Сельскохозяйственные и пищевые предприятия

В результате деятельности сельскохозяйственных предприятий образуются органические отходы, которые, разлагаясь, выделяют биогаз, загрязняющий окружающую среду.

Мы предлагаем экологичное решение производства биометана из органических отходов, которое принесет вам дополнительную прибыль.

Водоочистные сооружения

В отстойниках водоочистных сооружений в результате разложения донных осадков в больших количествах образуется биогаз, загрязняющий атмосферу.

Мы предлагаем экологичное решение производства биометана из осадка сточных вод.

Применение биометана

Электрическая и тепловая энергия Полученный биометан направляется в газораспределительную сеть и используется в промышленных и

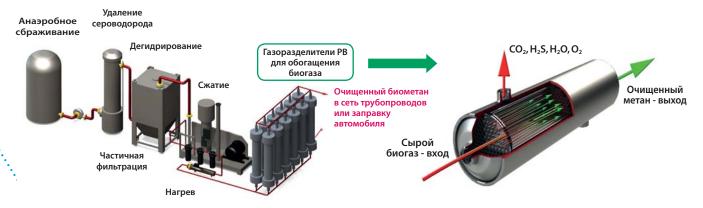
в газораспределительную сеть и используется в промышленных и бытовых энергетических установках для выработки электроэнергии и тепла.

Биотопливо (КПГ/СПГ)

Биометан в виде компримированного природного газа (КПГ) или сжиженного природного газа (СПГ) используется как экологически чистое топливо для автотранспорта.

Водородное топливо

Комбинация из мембранной установки и водородного генератора производит из биогаза чистый водород, применимый как биологически чистое топливо для автомобилей или энергетических установок.



Технологии производства биометана

Мембранные газоразделители PRISM® для обогащения биогаза

Мембранные газоразделители PRISM® PB от Air Products — экономически эффективный способ производства биометана. Используя технологию селективного разделения биогаза, эти надежные установки отделяют молекулы метана от углекислого газа, кислорода и водяного пара. На выходе получается очищенный и сухой поток метана, готовый к применению.

Типовой поток получения биометана за счет технологии мембранной сепарации газов Air Products

Только для иллюстрации. Компоненты представлены не в масштабном соотношении. Варианты тредварительной обработки зависят от применения

Обогащение биогаза

Мембранные системы PRISM® от Air Products используют запатентованную технологию половолоконных мембран для выборочного отделения нежелательных компонентов из потока биогаза, полученного в результате процесса анаэробного брожения.

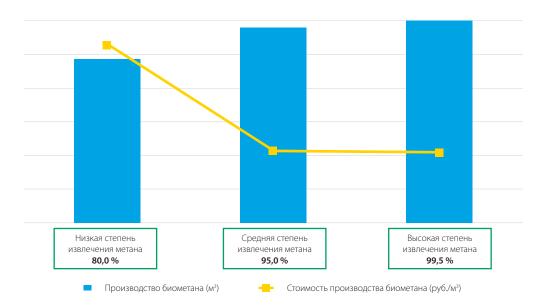
Тысячи крошечных полых волокон вытягиваются из полимеров на нашем современном производственном предприятии и собираются в легких и прочных алюминиевых оболочках.

Биогаз подается в мембранный модуль под давлением и нежелательные молекулы газа избирательно удаляются. В результате получается очищенный поток биометана, который полностью готов для промышленного использования и не требует дополнительной очистки.

Мембранные установки PRISM® для модернизации биогаза содержат тысячи крошечных полых волокон. Молекулы газа меньшего размера, такие как диоксид углерода и водяной пар, проходят через стенки мембраны, в то время как более крупные молекулы метана перемещаются внутри полых волокон до конца модуля.

Преимущества применения мембран

- "Пассивная" технология с минимальными затратами на техобслуживание
- Система может быть модифицирована путем добавления или удаления "модулей"
- Многоступенчатые системы могут производить метан с чистотой до 99,5%
- Эффективны в удалении содержащейся воды
- Низкие капитальные затраты
- Срок службы мембранных модулей от 8 до 12 лет



На практике, трехступенчатые системы применяются наиболее часто.

Выбор количества ступеней всегда основан на детальном анализе биогазового сырья.

Различные степени чистоты:

1-я ступень	концентрация метана 88%		
	(неприменимо для подачи в сеть)		
2-я ступень	концентрация метана 96-98%		
3-я ступень	концентрация метана 99,5%		

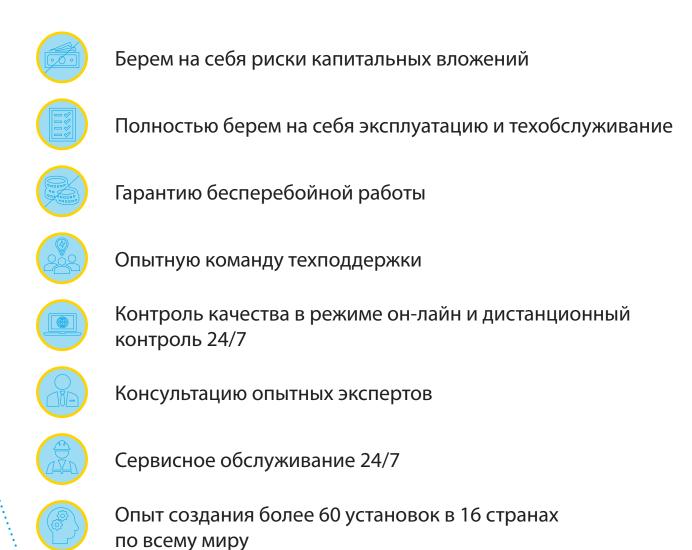
Преимущества мембран PRISM®

Наша стратегия

Мы гибко подходим к предложению опций нашим заказчикам. Выбирайте вариант, который наиболее соответствует стратегии вашей компании.

Покупка биогаза (модель SOG - Sale Of Gas)

Большое преимущество этого варианта заключается в отсутствии инвестиций в технологии и оборудование для заказчика, а также в отсутствии затрат на обслуживание и эксплуатацию. В этом случае все расходы берет на себя Air Products, гарантируя бесперебойные поставки газа, работоспособность установки и безопасное производство. Air Products владеет установкой производства газа и эксплуатирует ее, а также поставляет газ заказчику на основании долгосрочного контракта.



Покупка технологического оборудования (модель SOE - Sale Of Equipment)

Этот вариант заключается в приобретении заказчиком технологии очистки биогаза и производства биометана за свой счет. В этом случае необходимо учитывать, что все затраты на приобретение технологии и оборудования, как и затраты на эксплуатацию и обслуживание этого оборудования несет заказчик. В рамках этой модели заказчик владеет оборудованием и эксплуатирует его.

Что мы предлагаем

Референс лист установок с использованием мембранных сепараторов PRISM®

Европа

Страна	Запуск	Происхождение биогаза	Нм³/ч
Швейцария	1984	Полигон ТБО	110
Италия	1987	Полигон ТБО	11
Австрия	2013	Сельское хозяйство	800
Норвегия	2014	Пищевые отходы	30
Италия	2015	Сточные воды	50
Италия	2015	Сельско-хозяйственные отходы	50
Италия	2017	Сточные воды	100
Италия	2017	Полигон ТБО	100
Франция	2017	Сточные воды	100
Великобритания	2017	Сельско-хозяйственные отходы	900
Франция	2017	Сточные воды	30
Франция	2018	Сельско-хозяйственные отходы	160
Италия	2019	Полигон ТБО	50
Франция	2019	Сельско-хозяйственные отходы	320
Франция	2019	Сельско-хозяйственные отходы	210
Франция	2019	Сельско-хозяйственные отходы	800
Нидерланды	2019	Полигон ТБО	20
Франция	2019	Сельско-хозяйственные отходы	600
Италия	2020	Сточные воды	1800
Франция	2020	Сточные воды	360

Наши мембраны для модернизации биогаза используются на заводах наших клиентов по всему миру с 1983 года, что подтверждает обширный опыт Air Products по реализации комплексных решений модернизации биогаза.

С нетерпением ждем сотрудничества с вами.

Азия

Страна	Запуск	Происхождение биогаза	Нм³/ч
Япония	2008	С/х отходы + сточные воды	10
Япония	2009	С/х отходы + сточные воды	10
Япония	2009	Пищевые отходы	10
Япония	2010	Сельско-хозяйственные отходы	10
Япония	2011	Пищевые отходы	30
Япония	2012	Сельско-хозяйственные отходы	10
Япония	2012	Пищевые отходы	10
Япония	2012	Сельско-хозяйственные отходы	20
Япония	2013	С/х отходы + сточные воды	20
Малайзия	2015	Сельско-хозяйственные отходы	660
Япония	2016	С/х отходы в водород	60

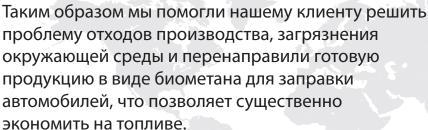
Северная Америка

Страна	Запуск	Происхождение биогаза	Нм³/ч
Алабама	1983	Полигон ТБО	110
Калифорния	1984	Полигон ТБО	30
Огайо	2012	Муниципальные отходы	480
Миссури	2019	Сельско-хозяйственные отходы	1100
Юта (3)	2020	Сельско-хозяйственные отходы	1100

ИСТОРИИ УСПЕХА В МИРЕ

Биометан из свалочного газа

Мембранная установка PRISM® для обогащения биогаза на одном из полигонов ТБО нашего клиента в Италии перерабатывает биогаз в количестве 150 Нм³/ч. Получаемый в результате биометан используется для производства электроэнергии, а также в качестве топлива для автобусного парка в одном из итальянских городов.


Биометан из отходов животноводства

Мембранная установка PRISM® для обогащения биогаза установлена на ферме в Италии и производит биометан из продуктов брожения навоза и силоса с потоком сырого биогаза 250 Hm³/ч.

Биометан из осадка сточных вод

На водоочистных сооружениях нашего клиента в Италии при помощи мембранной установки PRISM® производят биометан из осадка сточных вод с потоком сырого биогаза 150 Hm³/ч. Очищенный биометан используется в качестве топлива для автомобилей компании благодаря заправочной станции в составе установки.

ИСТОРИИ УСПЕХА В МИРЕ

Водородное топливо из биогаза

Мембранные газоразделители для обогащения биогаза используются на первой водородной заправочной станции в Сикаои, Япония, где в качестве топлива применяется водород, произведенный из биогаза.

Топливо будущего – чистая и возобновляемая энергия

Мембранная технология Air Products на основе мембран PRISM® PB позволяет создавать экологически чистое топливо на основе водорода из возобновляемых источников, а не синтезировать его с использованием ископаемого топлива.

В Shikaoi Hydrogen Farm® - первая водородная заправочная станция в Сикаои, Япония, где используется поток органических сельскохозяйственных отходов, которые сбраживаются в резервуаре с выделением больших объемов биогаза. Очищенный биометан используется как исходное сырье для синтеза водорода.

Первый в своем роде

Водородная ферма в Сикаои (Shikaoi Hydrogen Farm®) - это пятилетний бизнеспроект, порученный Министерством охраны окружающей среды Японии в области низкоуглеродной водородной энергетики. Проект демонстрирует интегрированную цепочку поставок энергии на основе водорода, используя местные возобновляемые источники энергии для производства, хранения, транспортировки и использования водорода. Водород возвращается местным животноводам и соседним предприятиям в качестве источника возобновляемой энергии и топлива. На ферме Хоккайдо установлена первая водородная автозаправочная станция, которая снабжает топливом автомобили, работающие на водороде.

